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Microarray-based expression profiling and informatics
Richard Simon

Microarray-based expression profiling is a powerful technology

for studying biological mechanisms and for developing

clinically valuable predictive classifiers. The high-dimensional

read-out for each sample assayed makes it possible to do new

kinds of studies but also increases the risks of misleading

conclusions. We review here the current state-of-the-art for

design and analysis of microarray-based investigations.
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Introduction
Microarray-based gene expression profiling is a powerful

technology that can be effectively used to first, find genes

whose expressions are correlated with a phenotype or

second, find a classifier for predicting the phenotype of a

sample. The first objective is often called class comparison
in cases where the phenotype takes two or more categ-

orical values. For example, one might look for the genes

that are differentially expressed in cell lines containing a

p53 mutation compared to other cell lines. The paradigm

of finding genes correlated with a phenotype also includes

problems where the phenotype is a quantitative measure-

ment or even survival time of the patients whose tumors

are being profiled. An example of the second kind of

objective is prediction of whether a patient is likely to

respond to a drug based on a pretreatment expression

profile of his or her tumor. Using a training set of expres-

sion profiles for patients who were treated with the drug

and whose response is known, one can develop a pre-

dictive classifier for use with future patients.

Gene expression profiling offers both great opportunity

for new kinds of investigation and great risk of error

because it provides such a high-dimensional read-out

for each specimen assayed. If one compares expression

profiles for each of 10 000 genes for two classes of

samples, even if there are no genes that are really

expressed differently in the classes there will on average

be 500 false positive genes found statistically significantly

differentially expressed between the classes at a p < .05

level. Clustering the expression profiles of the specimens

using these 500 ‘significant’ genes will generally produce

two distinct clusters but the findings will be spurious

[1��]. Our objective here is to provide some guidance on

the design and analysis of microarray expression profiles

to biomedical scientists who are attempting to utilize this

potentially powerful technology. The BRB-ArrayTools

software contains the statistical methods we have found

most appropriate and effective for the analysis of such

studies [2]. The software is available at http://linus.

nci.nih.gov/brb.

Study design
Clear objectives are essential for the effective design of

microarray studies. The objectives indicate the kinds of

samples that should be included and the number of such

samples. The statistical power for identifying differen-

tially expressed genes or for developing classifiers is

generally determined by the number of biological replicates
in each class. These are distinguished from technical
replicates which are just repeat assays of the same RNA

samples. Most commercial microarray platforms have

reached a degree of reproducibility that technical repli-

cates are of very limited value. Technical artifacts still

exist, however, and so it is important to perform the assays

in a manner that does not confound phenotype classes

with assay performance. For example, in comparing

expression of p53 mutant cell lines to p53 wild-type cell

lines, one should avoid assaying all the mutants with one

set of reagents on one week and the wild-type cell lines

with a different set of reagents on another week. If a large

number of samples are to be assayed, the phenotype

classes should be intermixed in the group assayed at each

time. Pooling samples is generally not advantageous [3].

When dual-label arrays are used, there are additional

design issues to be addressed concerning whether to

use a common reference RNA or to pair the samples

from different classes for cohybridization on each array.

Dobbin et al. provide a thorough discussion of this issue

[4]. Dobbin and Simon provide formulas and graphs for

determining the number of experimental/biological repli-

cates needed for class comparison problems [5�] or for

developing a predictive classifier [6�].

Finding genes whose expression is correlated
with a phenotype
In finding genes whose expression is correlated with a

phenotype, a key analysis objective is to limit the number

of false positive findings. Many publications have used
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average fold change between the classes to identify

differentially expressed genes. This approach, however,

ignores variation of gene expression among samples

within the same class, ignores the fact that the variation

differs among genes, and does not provide any control on

the number of false positive findings. The simplest

approach to addressing these deficiencies is to use a

simple statistical test, such as a t-test to evaluate differ-

ential expression separately for each gene. By using a

stringent threshold of significance the number of false

positive findings can be limited; a threshold of p < .001

results in 1 false positive gene per 1000 genes analyzed on

average. If there are few samples per class, however, the

statistical power of this approach will be poor because the

estimates of within-class variation, made separately for

each gene, will be very imprecise. Improved methods

based on t or F statistics which borrow variance infor-

mation among genes are recommended if there are less

than 10 samples per class [7,8]. These methods are called

regularized t-tests, random variance t-tests, or empirical

Bayes t-tests. They are based on the assumption that the

within-class variances for different genes come from the

same distribution, but not that they are equal.

More sophisticated multivariate testing procedures can

provide greater power than the regularized t-tests while

controlling the number or proportion of false discoveries.

If N genes are reported as differentially expressed among

classes and m of those are false positives, then m/N is the

false discovery proportion. The expected value of m/N is

called the false discovery rate. When using univariate

methods like the regularized t-test, one can compute a

conservative estimate of the false discovery rate as p[m]N/

m, where p[m] denotes the mth smallest p value among the

N genes evaluated [9]. The widely used SAM method of

Tusher et al. [10] is a multivariate method that controls

the false discovery rate. The multivariate permutation

test of Korn et al. [11] controls the probability that m/N
exceeds a specified limit; it can also be used to control the

probability than m exceeds a specified number. These

methods take advantage of the correlation of expression

among different genes and are effective even when there

are relatively few samples per class. A comparison of

methods for finding genes whose expression is correlated

with phenotype was reported by Jeffery et al. [12].

Most of the methods used for finding genes whose

expression is correlated with a phenotype can be used

with categorical phenotypes, quantitative phenotypes, or

survival time phenotypes. The measure of correlation

used for each gene varies depending on the type of

phenotype of interest. For categorical phenotypes, the

multivariate methods such as SAM and the multivariate

test of Korn et al. are based on computing regularized

t-tests for each gene. For survival time phenotypes,

p values from univariate proportional hazards regression

analyses can be used.

With time course data the phenotype is time after an

experimental intervention and the basic analysis is for

the purpose of identifying genes whose expression is

changing with time. Those genes can be identified in a

manner that controls the number or proportion of false

discoveries. Clustering those genes sorts them into sets

showing similar patterns over time. One can also identify

genes whose variation with time differs based on some

other phenotype [13]. Supervised methods for analyzing

time course data are available in specialized software

[2,14].

In the past, investigators have generally first identified

those genes whose expression is correlated with a phe-

notype and then used functional annotations to try to

understand the inter-relationships among the genes. The

effectiveness of this post hoc annotation of gene lists is

limited by the statistical stringency necessary in creating

the gene lists in order to limit the false discovery rate.

More recently methods have become available that uti-

lize annotation information prospectively in the identifi-

cation of gene sets whose expression is correlated with

phenotype. For any a priori specified set of genes, one

tests either first, whether the degree of correlation among

phenotypes for the genes in the set is greater than one

would expect for a random set of genes represented on

the array; or second, whether any genes in the set have

expression correlated with the phenotype. A number of

statistical methods have been proposed for testing these

hypotheses [15�,16�,17,18,19]. For example, BRB-Array-

Tools includes gene lists for sets of genes with the same

Gene Ontology annotation, sets of genes for each Kegg or

Biocarta pathway, sets of genes for each Broad Institute

signature, sets of genes that are targets of the same

transcription factor, sets of genes that are putative targets

of the same microRNA, and sets of genes that contain a

common protein domain.

Class prediction
Many prognostic factor studies are conducted using a

convenience sample of available specimens from a

heterogeneous group of patients who have received a

variety of treatments. Showing that a new classifier is

prognostic for such a mixed group often has uncertain

therapeutic relevance. Predictive classifiers that identify

which patients respond to specific treatments are often

more valuable. In planning a study to develop a predictive

classifier, considerable care should be given to selecting

cases so that the result has potential therapeutic

relevance. Very often this objective can be enhanced

by selecting cases who participated in an appropriate

clinical trial.

Numerous algorithms have been used effectively with

DNA microarray data for class prediction. Many of the

widely used classifiers combine the expression levels of

the genes selected as informative for discrimination using
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a weighted linear function:

lðxÞ ¼
X

i2G

wixi (1)

where xi denotes the log-ratio or log-signal for the ith gene,

wi is the weight given to that gene, and the summation is

over the set G of genes selected for inclusion in the

classifier. For a two-class problem, there is also a threshold

value d; a sample with expression profile defined by a

vector x of values is predicted to be in class 1 or class 2

depending on whether lðxÞ as computed from Eq. (1) is less

than the threshold d or greater than d, respectively. Many of

the widely used classifiers are of the form shown in (1); they

differ with regard to how the weights are determined.

Dudoit et al. [20,21�] compared many classification algor-

ithms and found that the simplest methods, diagonal

linear discriminant analysis, and nearest neighbor classi-

fication, usually performed as well or better than the more

complex methods. Nearest neighbor methods are not of

the linear form shown in (1). They are based on comput-

ing similarity of a sample available for classification to

samples in a training set. Often Euclidean distance is used

as the similarity measure, but is calculated with regard to

the set of genes selected during training as being infor-

mative for distinguishing the classes. Ben-Dor et al. [22]

also compared several methods and found that nearest

neighbor classification generally performed as well or

better than more complex methods. Similar results were

found by Wessels et al. [23]. In addition, Wessels et al. and

Lai et al. [24] found that simple gene selection strategies

generally worked as well or much better than more

complex multivariate strategies. The simple strategies

generally select genes based on their univariate corre-

lation with the class phenotype; for example, using t-
statistics. Multivariate methods attempt to identify sets of

genes that work well together for classification. Few

datasets are large enough to support multivariate gene

selection without over-fitting in a manner that results in

poor prediction for independent samples because of the

large numbers of candidate genes and the larger numbers

of ways of combining the genes. Lai et al. point out serious

biases in the way that many of the multivariate methods

have been evaluated, resulting in unsubstantiated claims.

A cardinal principal for evaluating a predictive classifier is

that the data used for testing the classifier should not be

used in any way for building the classifier. The simple

split-sample method achieves this by partitioning the

study samples into two parts. The separation is often

done randomly, with half to two-thirds of the cases used

for developing the classifier and the remainder of the

cases in the test set. The cases in the test set should not be

used in any way, until a single completely specified model

is developed using the training data. At that time, the

classifier is applied to the cases in the test set. For

example, with an expression profile classifier, the classi-

fier is applied to the expression profiles of the cases in the

test set and each of them are classified, as a responder or

nonresponder to the therapy. The patients in the test set

have received the treatment in question and so one can

count how many of those predictive classifications were

correct and how many were incorrect. In using the split-

sample method properly, a single classifier should be

defined on the training data. It is not valid to develop

multiple classifiers and then use their performance on the

test data to select among the classifiers [25].

There are more complex forms of dividing the data into

training and testing portions. These crossvalidation or

resampling methods utilize the data more efficiently than

the simple division described above [26�]. Crossvalidation

generally partitions the data into a large training set and a

small test set. A classifier is developed on the training set

and then applied to the cases in the test set to estimate the

error rate. This is repeated for numerous training-test

partitions and the prediction error estimates are averaged.

In order to honor the key principal of not using the same

data to both develop and evaluate a classifier, it is essen-

tial that for each training-test partition the data in the test

set are not used in any way [27�]. Hence a model should

be developed from scratch in each training set. This

means that multiple classifiers are developed in the

process of doing crossvalidation and those classifiers will

in general involve different sets of genes. It is completely

invalid to select the genes beforehand using all the data

and then to just crossvalidate the model building process

for that restricted set of genes. Radmacher et al. [28] and

Ambroise and McLachlan [29�] demonstrated that such

preselection results in severely biased estimates of pre-

diction accuracy. In spite of this known severe bias, this

error is made in many developmental classifier studies. It

is also made in many biased reports touting the merits of

new kinds of classifiers [24].

Conclusion
Gene expression profiling is a powerful tool for elucidat-

ing biological mechanisms and moving medicine toward a

more predictive future. Effective use of this technology

requires substantially increased emphasis on interdisci-

plinary collaboration for the design and analysis of stu-

dies. The current state of the literature with regard to

analysis of microarray expression data is of serious con-

cern [1]. The key limitation for effective use of this

technology is not software engineering for managing large

datasets. Development of high-dimensional biotechnol-

ogy also highlights the importance of new directions for

the training of biomedical scientists.
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